edexcel

Mark Scheme (Results)
November 2013

Pearson Edexcel GCSE
In Mathematics Linear (1MA0)
Higher (Calculator) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

November 2013
Publications Code UG037493
All the material in this publication is copyright
© Pearson Education Ltd 2013

NOTES ON MARKI NG PRI NCI PLES

1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

Comprehension and meaning is clear by using correct notation and labeling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme

```
M1 - method mark
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working
```

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
$1 \quad \text { (a) }$		18.75	2	M1 for 84 or 4.48 or $\frac{112}{25}$ or 18.7 or 18.8 or 19 or 20 or $\frac{75}{4}$ A1 cao
(b)		20	1	B1 for 20 or ft from their answer to (a) provided (a) is written to 2 or more significant figures
$2 \quad \text { (a) }$		12	2	M1 for $32 \div 8(=4)$ or $\frac{3}{8} \times 32$ oe A1 for 12
(b)		36	2	M1 for correct method to find 45% of 80 A1 cao
3		4	2	M1 for 14 or $\frac{3+7}{n}=\frac{5}{7}$ or any fraction equivalent to $\frac{2}{7}$ or $\frac{5}{7}$ A1 cao
4			2	M1 for a 5 cm by 5 cm square or a 5 cm by 3 cm rectangle or a 5 cm by 2 cm rectangle A1 for correct elevation with dividing line NB: diagrams which appear to have a 3D element get 0 marks

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
5		$\begin{gathered} £ 26.50 \\ \text { or } \\ H K \$ 325.95 \end{gathered}$	3	M1 for $3179.55 \div 12.3$ (=258.5) M1 (dep) for 285 - '258.5' A1 for $£ 26.50$ (correctly stated with currency) OR M1 for 285×12.3 (=3505.5) M1 (dep) for '3505.5' - 3179.55 (=325.95) A1 for HK $\$ 325.95$ (correctly stated with currency)
6		19	4	```M1 for 130-96(=34) M1 for 73-55 (=18) M1 for '34' -9 - '18' +12 A1 cao OR M1 for 96-55-12 (=29) M1 for \(9+\) '29' (=38) M1 for 130-73-'38' A1 cao```

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
*7		Small with correct figures for comparison	4	M1 for one calculation eg $6.5 \div 30(=0.216 \ldots)$ or $8.95 \div 40(=0.22375)$ or $10.99 \div$ $50(=0.2198)$ M1 for all three calculations eg $6.5 \div 30(=0.216 \ldots)$ and $8.95 \div 40(=0.22375)$ and $10.99 \div 50(=0.2198)$ A1 for $0.216(6 \ldots)$ and $0.223(75)$ and $0.219(8 \ldots)$; can be rounded or truncated as long as they remain different C 1 (dep on M 1) for conclusion ft from three comparable figures [could use different figures relating to 30, 40, 50] OR M1 for one calculation eg $6.5 \times 20(=130)$ or $8.95 \times 15(=134.25)$ or 10.99×12 (=131.88) M1 for three calculations eg $6.5 \times 20(=130)$ and $8.95 \times 15(=134.25)$ and $10.99 \times$ $12(=131.88)$ A1 for 130 and $134(.25)$ and $131(.88)$; can be rounded or truncated as long as they remain different C1 (dep on M1) for conclusion ft from three comparable figures eg cost of 600 plants or comparing small and medium and small and large e.g. 120 plants and 150 plants separately] OR M1 for one calculation e.g $30 \div 6.5(=4.615 \ldots)$ or $40 \div 8.95(=4.469 \ldots)$ or $50 \div 10.99(=4.549 \ldots)$ M1 for three calculations e.g. $30 \div 6.5(=4.615 \ldots)$ and $40 \div 8.95(=4.469 \ldots)$ and $50 \div 10.99(=4.549 \ldots)$ A1 for $4.6(15 \ldots)$ and $4.4(69 \ldots)$ and $4.5(49 \ldots)$ can be rounded or truncated as long as they remain different C 1 (dep on M1) for conclusion ft from three comparable figures [or any other calculations leading to comparable figures]

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
$8 \quad \text { (a) }$		$7 n-4$	2	B2 for $7 n-4$ (B1 for $7 n+d$ where d is an integer)
(b)		explanation	2	M1 for ' $7 n-4$ ' $=150$ or any other valid method, eg. counting on 7s (to get 150) A1 for a complete explanation eg. the 22 nd term is 150 or $n=22$ from solution of equation or a clear demonstration based on 22 or complete sequence
9		115	4	M1 for 360-4×25 (=260) M1 (dep) for ' 260 ' $\div 4$ (=65) M1 for $180-{ }^{\prime} 65$ ' or ($360-2 \times ' 65$ ') $\div 2$ A1 for 115 with working OR M1 for $360 \div 4(=90)$ M1 (dep) for '90' - 25 ($=65$) M1 for $180-165$ ' or $(360-2 \times ' 65 ') \div 2$ A1 for 115 with working
10		Merit	3	M1 for $\frac{62}{80} \times 100(=77.5)$ A1 for 77.5% or 78% B1 ft (dep on M1) for 'Merit' OR M1 for calculating a percentage between 70 and 85% of 80 eg $0.7 \times 80(=56)$ or $0.84 \times 80(=67.2)$ or $0.85 \times 80(=68)$ A1 for 56 and $67(.2)$ or 68 or for two appropriate values which can be compared with 62 B1 ft (dep on M1) for 'Merit'

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
14 (a)		$20<T \leq 24$	1	B1 for $20<T \leq 24$
(b)	$\begin{aligned} & 6 \times 10+8 \times 14+13 \times 18+ \\ & 21 \times 22+2 \times 26=920 \\ & 920 \div 50 \end{aligned}$	18.4	4	M1 for finding $f x$ with x consistent within intervals (including the end points) allow 1 error; implied by 820,1020 M1 (dep) for use of all correct mid-interval values eg 920 M1 (dep on 1st M1) for $\sum f x \div \sum f$ A1 for 18.4 oe
(c)		correct frequency polygon	2	B2 for fully correct frequency polygon - points plotted at the midpoint (B1 for all points plotted accurately but not joined with straight line segments) or all points plotted accurately and joined with last joined to first to make a polygon or all points at the correct heights and consistently within or at the ends of the intervals and joined (can include joining last to first to make a polygon) NB : ignore parts of graph drawn to the left of the $1^{\text {st }}$ point or the right of the last point
15		80.1	3	M1 for $39^{2}+70^{2}$ M1 for $\sqrt{" 1521 "+" 4900 "}$ or $\sqrt{" 6421 "}$ A1 for 80.1-80.2

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
18		49.5	4	$\text { M1 for } \tan 54=\frac{\text { height }}{6}$
				M1 for (height $=$) $6 \times \tan 54(=8.2-8.3)$
				$\text { M1 for } \frac{1}{2} \times 18.258 . . ' \times 12$
				A1 for 49.2-50
				OR
				M1 for $\cos 54=\frac{6}{A C}$ M1 for $(A C=) \frac{6}{\cos 54}(=10.2(07 \ldots))$
				$\begin{aligned} & \text { M1 for } \frac{1}{2} \times 12 \times 10.207 \times \sin 54 \\ & \text { A1 for } 49.2-50 \end{aligned}$
				OR
				M1 for $\frac{A C}{\sin 54}=\frac{12}{\sin 72}$
				M1 for $(A C=) \frac{12}{\sin 72} \times \sin 54(=10.2(07 \ldots))$
				$\begin{aligned} & \text { M1 for } \frac{1}{2} \times 12 \times 10.207^{\prime} \times \sin 54 \\ & \text { A1 for } 49.2-50 \end{aligned}$

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
19 (a)		0.00078	1	B1 cao
(b)		9.56×10^{7}	1	B1 cao
20		116	3	```M1 for \(80 \%\) or 0.8 seen oe or \(\frac{464}{0.8}(=580)\) M1 for \(\frac{464}{0.8}-464\) A1 cao OR M1 for \(80 \%\) or 0.8 seen oe M1 for \(464 \div 4\) or \(464 \div(80 \div 20)\) A1 cao```
21 (a) (b)		$\begin{gathered} (2 x+3)(2 x-3) \\ m=\frac{g-5}{a+3} \end{gathered}$		B1 cao M1 for correct processes to isolate terms in m from other terms M1 for taking m out as a common factor A1 for $m=\frac{g-5}{a+3}$ or $m=\frac{5-g}{-a-3}$

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
$22 \quad \text { (a) }$		'show'	2	M1 for $\frac{1}{2} \times(x-4+x+5) \times 2$ or $2 x \times(x-4)+\frac{1}{2} \times 2 x \times 9$ A1 for completion with correct processes seen
(b)		13	3	M1 for $\frac{-1 \pm \sqrt{1^{2}-4 \times 2 \times-351}}{2 \times 2}$ condone incorrect sign for 351 M1 for $\frac{-1 \pm \sqrt{2809}}{4}$ A1 for 13 NB for either M mark accept + only in place of \pm OR M2 for $(2 x+27)(x-13)$ (M1 for $(2 x \pm 27)(x \pm 13))$ A1 for 13
23		15	2	M1 for $\frac{134}{1065} \times 120$ or $15.098 \ldots$ oe A1 cao

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
24		14.4	3	$\begin{aligned} & \text { M1 for } \pi \times 6.5^{2} \times 11.5(=1526.42 \ldots) \\ & \text { M1 (dep) for } \frac{1526.42 \ldots '}{\pi \times 5.8^{2}} \\ & \text { A1 for } 14.4-14.5 \\ & \text { OR } \\ & \text { M1 for } \frac{5.8}{6.5} \text { or } \frac{6.5}{5.8} \text { or } 0.89(23 \ldots) \text { or } 1.12(06896 \ldots) \\ & \text { M1 for } 11.5 \div\left(\frac{5.8}{6.5}\right)^{2} \text { or } 11.5 \div\left(\frac{6.5}{5.8}\right)^{2} \\ & \text { A1 for } 14.4-14.5 \end{aligned}$
*25		Yes with explanation	3	M1 For Line A: writes equation as $y=1.5 x+4$ or gives the gradient as 1.5 or constant term of 4 OR for Line B: shows a method which could lead to finding the gradient or gives the gradient as 2 or constant term of 4 or calculates a sequence of points including $(0,4)$ or writes equation of line as $y=2 x+4$ M1 Shows correct aspects relating to an aspect of Line A and an aspect of Line B that enables some comparison to be made eg gradients, equations or points. C 1 for gradients 1.5 and 2 and Yes with explanation that the gradients are different or states the lines intersect at $(0,4)$ or explanation that interprets common constant term (4) from equations OR M1 for a diagram that shows both lines drawn and intersecting at $(0,4)$ M1 for a diagram that shows both lines and their intersection point identified as $(0,4)$ C 1 for Yes and states the intersection point as $(0,4)$

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
26	$\begin{aligned} & 180-136-" 34.4 " \\ & =9.504 \end{aligned}$	3.73	5	$\begin{aligned} & \text { M1 for } \frac{\sin L}{12.8}=\frac{\sin 136}{15.7} \\ & \text { M1 for } L=\sin ^{-1}\left(\frac{\sin 136}{15.7} \times 12.8\right) \text { or or } \sin ^{-1} 0.566 \ldots \\ & \text { A1 for } 34.4-34.5 \\ & \text { M1 for } \frac{L N}{\sin \left(180-136-^{\prime} 34.4^{\prime}\right)}=\frac{15.7}{\sin 136} \text { or } \frac{\mathrm{LN}}{\sin \left(180-136 \sigma^{\prime} 34.4^{\prime}\right)}=\frac{12.8}{\sin ^{\prime} 34.4^{\prime}} \text { or } \\ & \left(L N^{2}=\right) 15.7^{2}+12.8^{2}-2 \times 15.7 \times 12.8 \times \cos \left(180-136-34.4^{\prime}\right) \\ & \text { A1 for } 3.73-3.74 \end{aligned}$
27	$\begin{aligned} & 12 \times 20+10.8 \times 10+ \\ & 7 \times 15+5 \times 15+1.8 \times 30 \\ & +0.6 \times 30 \\ & =240+108+105+75 \\ & \quad+54+18 \\ & =528+72=600 \end{aligned}$	12\%	3	M1 for attempt to work out total area $(\mathrm{eg}=600)$ or area greater than $60(\mathrm{eg}=72)$ by using fd or counting squares $\text { M1 (dep) for } \frac{{ }^{\prime} 72^{\prime}}{' 6000^{\prime}} \times 100 \text { oe }(=12)$ A1 cao (must have \% otherwise 2 marks)

Question 6:

	F	S	G	
W	12	55		96
M	7	$\mathbf{1 8}$	9	34
	$\mathbf{1 9}$	73		130

	F	S	G	
W	12	55	$\mathbf{2 9}$	96
M			9	
	$\mathbf{1 9}$	73	$\mathbf{3 8}$	130

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA0_2H

Question		Modification	Notes
Q4		Model as well as diagram of prism provided. Question reversed.	Standard mark scheme
Q9		MLP - a changed to x	Standard mark scheme
Q11	(a) (c)	MLP $-x$ changed to y MLP - a changed to e	B2 for $3 e^{-4} f^{6}$ or $\frac{3 f^{6}}{e^{4}}$ (B1 for any two from 3, e^{-4} or $\frac{1}{e^{4}}, f^{6}$ in a product)
Q14	(c)	Some frequencies changed: $6,8,14,20,2$ Grid - y axis labelled in 4 s up to 24 . 2 cm for 2 . x - axis 2 cm for 2	Standard mark scheme Standard mark scheme

PAPER: 1MA0_2H			
Question		Modification	Notes
Q15		Braille - information given about the diagram.	Standard mark scheme
Q17		Grid $x 1.5$ with 1.5 cm squares. For 36 pt , squares will be close to 2 cm .	Standard mark scheme
Q18		Braille - information given about the diagram.	Standard mark scheme
Q21	(b)	a changed to f	M1 for correct processes to isolate terms in m from other terms M1 for taking m out as a common factor A1 for $m=\frac{g-5}{f+3}$ or $m=\frac{5-g}{-f-3}$
Q22		MLP and Braille - diagram labelled clockwise from the top left. ABCD. x changed to y. Information given about the diagram.	Standard mark scheme
Q24		Model as well as diagram provided.	Standard mark scheme
Q26		MLP and Braille information given about the diagram.	Standard mark scheme
Q27		Diagram: 20-30 bar brought down to 9 . $60-90$ bar brought up to 2 . $90-120$ bar brought up to 1.2 cm grid.	Standard mark scheme

